กระบวนการคำนวณความผิดพลาดโดยเฉลี่ยแบบอัตโนมัติเฉลี่ย (ข้อผิดพลาด ARMA) และโมเดลอื่นที่เกี่ยวข้องกับความล่าช้าของข้อกำหนดข้อผิดพลาดสามารถประมาณได้โดยการใช้งบ FIT และจำลองหรือคาดการณ์โดยใช้คำสั่ง SOLVE โมเดล ARMA สำหรับกระบวนการข้อผิดพลาดมักใช้กับโมเดลที่มีส่วนที่ตกค้าง autocorrelated มาโคร AR สามารถใช้เพื่อระบุโมเดลที่มีกระบวนการเกิดข้อผิดพลาดแบบอัตโนมัติ แมโคร MA สามารถใช้เพื่อระบุโมเดลที่มีกระบวนการเกิดข้อผิดพลาดในการเคลื่อนที่โดยเฉลี่ย ข้อผิดพลาดแบบอัตโนมัติ (Autoregressive Errors) แบบจำลองที่มีข้อผิดพลาดในการตอบสนองอัตโนมัติอันดับแรก AR (1) มีรูปแบบในขณะที่กระบวนการข้อผิดพลาด AR (2) มีรูปแบบอื่น ๆ สำหรับกระบวนการที่มีลำดับขั้นสูง โปรดทราบว่า s มีความเป็นอิสระและมีการแจกแจงแบบเดียวกันและมีค่าที่คาดว่าจะเท่ากับ 0 ตัวอย่างของรูปแบบที่มีส่วนประกอบ AR (2) เป็นเช่นนี้สำหรับกระบวนการที่มีลำดับขั้นสูง ตัวอย่างเช่นคุณสามารถเขียนแบบจำลองการถดถอยเชิงเส้นแบบง่ายๆโดยมีข้อผิดพลาดในการเคลื่อนที่เฉลี่ยของ MA (2) เนื่องจาก MA1 และ MA2 เป็นค่าเฉลี่ยเคลื่อนที่ โปรดทราบว่า RESID. Y ถูกกำหนดโดย PROC MODEL โดยอัตโนมัติเนื่องจากต้องใช้ฟังก์ชัน ZLAG สำหรับโมเดล MA เพื่อตัดทอนการซ้ำซ้อนของความล่าช้า เพื่อให้แน่ใจว่าข้อผิดพลาดที่ล่าช้าเริ่มต้นที่ศูนย์ในระยะล่มเหนี่ยวและไม่เผยแพร่ค่าที่หายไปเมื่อตัวแปรลุ่มหลาง - จุ่มช่วงหายไปและเพื่อให้แน่ใจว่าข้อผิดพลาดในอนาคตเป็นศูนย์แทนที่จะหายไประหว่างการจำลองหรือการคาดการณ์ สำหรับรายละเอียดเกี่ยวกับฟังก์ชันล่าช้าให้ดูที่ส่วน Lag Logic รูปแบบนี้เขียนโดยใช้มาโครแมคโครมีดังต่อไปนี้รูปแบบทั่วไปสำหรับรูปแบบ ARMA กระบวนการ ARMA ทั่วไป (p, q) มีรูปแบบต่อไปนี้รูปแบบ ARMA (p, q) สามารถระบุได้ดังต่อไปนี้: ที่ AR i และ MA j เป็นตัวแทน พารามิเตอร์ autoregressive และ moving average สำหรับความล่าช้าต่างๆ คุณสามารถใช้ชื่อใด ๆ ที่คุณต้องการสำหรับตัวแปรเหล่านี้ได้และมีวิธีการต่างๆมากมายที่สามารถเขียนข้อกำหนดได้ กระบวนการ ARMA แบบเวกเตอร์สามารถประมาณด้วย PROC MODEL ตัวอย่างเช่นตัวแปรสองตัวแปร AR (1) สำหรับข้อผิดพลาดของตัวแปรภายในสองตัว Y1 และ Y2 สามารถระบุได้ดังต่อไปนี้ปัญหา Convergence กับ ARMA Models รูปแบบ ARMA อาจเป็นเรื่องยากที่จะประมาณ หากค่าประมาณของพารามิเตอร์ไม่อยู่ในช่วงที่เหมาะสมโมเดลที่เหลืออยู่ของค่าเฉลี่ยเคลื่อนที่จะเพิ่มขึ้นเป็นทวีคูณ ส่วนที่เหลือที่คำนวณได้สำหรับข้อสังเกตในภายหลังอาจมีขนาดใหญ่มากหรืออาจล้น ซึ่งอาจเกิดขึ้นได้เนื่องจากค่าเริ่มต้นที่ไม่เหมาะสมถูกนำมาใช้หรือเนื่องจากการทำซ้ำได้ย้ายออกไปจากค่าที่สมเหตุสมผล ควรใช้ความระมัดระวังในการเลือกค่าเริ่มต้นสำหรับพารามิเตอร์ ARMA ค่าเริ่มต้นของ 0.001 สำหรับพารามิเตอร์ ARMA จะทำงานถ้ารูปแบบตรงกับข้อมูลที่ดีและปัญหาเป็นอย่างดีปรับอากาศ โปรดสังเกตว่าแบบจำลอง MA มักจะถูกประมาณด้วยรูปแบบ AR ที่มีลำดับสูงและในทางกลับกัน ซึ่งจะส่งผลให้เกิดความร่วมมือในระดับสูงในรูปแบบ ARMA แบบผสมซึ่งอาจทำให้เกิดการไม่ปฏิบัติอย่างร้ายแรงในการคำนวณและความไม่แน่นอนของการประมาณค่าพารามิเตอร์ หากคุณมีปัญหาเรื่องการลู่เข้าในขณะที่ประมาณแบบที่มีกระบวนการแก้ไขข้อผิดพลาด ARMA ให้ลองประมาณในขั้นตอน ขั้นแรกให้ใช้คำชี้แจง FIT เพื่อประมาณค่าพารามิเตอร์โครงสร้างที่มีพารามิเตอร์ ARMA ที่จัดไว้ให้เป็นศูนย์ (หรือก่อนการประมาณการที่สมเหตุสมผลหากมี) จากนั้นใช้คำสั่ง FIT อื่นเพื่อประมาณค่าพารามิเตอร์ ARMA เท่านั้นโดยใช้ค่าพารามิเตอร์โครงสร้างจากครั้งแรก เนื่องจากค่าของพารามิเตอร์โครงสร้างมีแนวโน้มที่ใกล้เคียงกับการประมาณขั้นสุดท้ายแล้วค่าพารามิเตอร์ ARMA จึงอาจมาบรรจบกัน สุดท้ายใช้คำสั่ง FIT อื่นเพื่อสร้างการประมาณค่าพารามิเตอร์ทั้งหมดพร้อมกัน เนื่องจากค่าเริ่มต้นของพารามิเตอร์นี้มีแนวโน้มใกล้เคียงกับการประมาณการร่วมขั้นสุดท้ายแล้วการประมาณการควรจะรวมกันได้อย่างรวดเร็วหากรูปแบบเหมาะสมกับข้อมูล เงื่อนไขเริ่มต้นของ AR ความล่าช้าเบื้องต้นของข้อผิดพลาดของ AR (p) สามารถจำลองได้หลายแบบ วิธีการเริ่มต้นของข้อผิดพลาด autoregressive ที่ได้รับการสนับสนุนโดย SASETS มีดังต่อไปนี้: เงื่อนไขอย่างน้อยสี่เหลี่ยม (ขั้นตอน ARIMA และ MODEL) รูปสี่เหลี่ยมผืนผ้าน้อยอย่างไม่มีเงื่อนไข (ขั้นตอน AUTOREG ARIMA และ MODEL) โอกาสสูงสุด (AUTOREG, ARIMA และ MODEL procedures) Yule-Walker (AUTOREG ขั้นตอนเท่านั้น) Hildreth-Lu ซึ่งจะลบข้อสังเกตแรก (ขั้นตอน MODEL เท่านั้น) ดูบทที่ 8 ขั้นตอน AUTOREG เพื่ออธิบายและอภิปรายถึงประโยชน์ของวิธีการเริ่มต้น AR (p) ต่างๆ การเริ่มต้น CLS, ULS, ML และ HL สามารถทำได้โดย PROC MODEL สำหรับข้อผิดพลาด AR (1) การเตรียมใช้งานเหล่านี้จะสามารถผลิตได้ดังแสดงในตารางที่ 18.2 วิธีการเหล่านี้เทียบเท่ากับตัวอย่างขนาดใหญ่ ตาราง 18.2 การเริ่มต้นดำเนินการโดย PROC MODEL: AR (1) ข้อผิดพลาดความล่าช้าในการเริ่มต้นของข้อผิดพลาดของรูปแบบ MA (q) สามารถจำลองได้ด้วยวิธีต่างๆ กระบวนงาน ARIMA และ MODEL ได้รับการสนับสนุนตามขั้นตอนเริ่มต้นข้อผิดพลาดโดยเฉลี่ยต่อไปนี้: ขั้นต่ำสุดของเงื่อนไขน้อยที่สุดของเงื่อนไขการประมาณค่าข้อผิดพลาดโดยเฉลี่ยของค่าเฉลี่ยเคลื่อนที่ไม่เหมาะสมเนื่องจากไม่สนใจปัญหาการเริ่มต้น ซึ่งจะช่วยลดประสิทธิภาพของการประมาณแม้ว่าจะยังคงเป็นกลาง ส่วนที่เหลือล้าหลังเริ่มต้นขยายก่อนการเริ่มต้นของข้อมูลถือว่าเป็น 0 ค่าที่คาดว่าจะไม่มีเงื่อนไข นี่เป็นการแนะนำความแตกต่างระหว่างส่วนที่เหลือเหล่านี้กับเศษที่เหลือน้อยที่สุดสำหรับความแปรปรวนร่วมเฉลี่ยที่เคลื่อนไหวซึ่งแตกต่างจากโมเดลอัตถิภาวนิยมยังคงอยู่ในชุดข้อมูล โดยปกติความแตกต่างนี้ลู่เข้าหากันอย่างรวดเร็วเป็น 0 แต่สำหรับกระบวนการเคลื่อนที่โดยเฉลี่ยที่ไม่สามารถพลิกผันลู่เข้าได้ค่อนข้างช้า เพื่อลดปัญหานี้คุณควรมีข้อมูลจำนวนมากและค่าพารามิเตอร์เฉลี่ยเคลื่อนไหวจะอยู่ในช่วงที่มีการเปลี่ยนแปลงได้ ปัญหานี้สามารถแก้ไขได้ด้วยค่าใช้จ่ายในการเขียนโปรแกรมที่ซับซ้อนมากขึ้น การประมาณค่ากำลังสองน้อยสุดที่ไม่มีเงื่อนไขสำหรับกระบวนการ MA (1) สามารถผลิตได้โดยการระบุรูปแบบดังนี้: ข้อผิดพลาดในการเคลื่อนที่เฉลี่ยอาจเป็นเรื่องยากที่จะประมาณได้ คุณควรพิจารณาการใช้ค่าประมาณ AR (p) กับค่าเฉลี่ยเคลื่อนที่ กระบวนการเฉลี่ยโดยเฉลี่ยอาจเป็นไปในทางเดียวกันโดยกระบวนการอัตโนมัติหากข้อมูลไม่ได้รับการปรับให้เรียบหรือแตกต่างกัน อาร์เรย์ AR มาโคร SAS สร้างอาร์เรย์การเขียนโปรแกรมสำหรับ PROC MODEL สำหรับโมเดลอัตถดถอย มาโคร AR เป็นส่วนหนึ่งของซอฟต์แวร์ SASETS และไม่มีตัวเลือกพิเศษที่ต้องตั้งค่าให้ใช้มาโคร กระบวนการอัตโนมัติสามารถนำไปใช้กับข้อผิดพลาดของสมการโครงสร้างหรือชุดภายในของตัวเองได้ อาร์กิวเมนต์ AR สามารถใช้สำหรับการทำงานแบบอัตโนมัติดังต่อไปนี้: การ จำกัด การให้อิสระแบบไม่ จำกัด แบบ จำกัด การตอบสนองอัตโนมัติแบบเวกเตอร์ Univariate Autoregression ในการสร้างแบบจำลองคำผิดพลาดของสมการในรูปแบบอัตชีวประวัติให้ใช้คำสั่งต่อไปนี้หลังจากสมการ: ตัวอย่างเช่นสมมุติว่า Y เป็น a ฟังก์ชันเชิงเส้นของ X1, X2 และข้อผิดพลาด AR (2) คุณจะเขียนแบบนี้ดังต่อไปนี้การเรียกร้องให้ AR ต้องมาหลังจากสมการทั้งหมดที่ใช้กับกระบวนการ การเรียกใช้แมโครก่อนหน้านี้ AR (y, 2) จะแสดงคำสั่งที่แสดงในผลลัพธ์ของ LIST ในรูปที่ 18.58 รูปที่ 18.58 ตัวเลือกตัวเลือกรายการสำหรับรุ่น AR (2) ตัวแปร PRED prefixed เป็นตัวแปรโปรแกรมชั่วคราวที่ใช้เพื่อให้ความล้าหลังของส่วนที่เหลือเป็นส่วนที่เหลือที่ถูกต้องและไม่ได้ถูกนิยามใหม่โดยสมการนี้ โปรดทราบว่านี่เทียบเท่ากับคำสั่งที่ระบุไว้อย่างชัดเจนในส่วน General Form for ARMA Models นอกจากนี้คุณยังสามารถ จำกัด ค่าพารามิเตอร์ autoregressive ให้เป็นศูนย์เมื่อเลือกล่าช้า ตัวอย่างเช่นถ้าคุณต้องการพารามิเตอร์ autoregressive ที่ lags 1, 12 และ 13 คุณสามารถใช้คำสั่งต่อไปนี้: งบเหล่านี้สร้างผลลัพธ์ที่แสดงในรูปภาพ 18.59 รูปที่ 18.59 ตัวเลือกตัวเลือกรายการสำหรับรุ่น AR ที่มีความล่าช้าที่ 1, 12 และ 13 รายละเอียดกระบวนการขั้นตอนการจัดทำรายการคำอธิบายรหัสโปรแกรมที่คอมไพล์เป็น PRED. yab ที่วิเคราะห์แล้ว x1 c x2 RESID. y PRED. y - PRED ที่เป็นจริง ERROR. y y - y OLDPRED. y PRED. y yl1 ZLAG1 (y - perdy) yl12 ZLAG12 (y - perdy) yl13 ZLAG13 (y - perdy) RESID. y PRED. y - ACTUAL. y ERROR. y PRED. y - y มี รูปแบบของวิธีกำลังสองน้อยสุดที่มีเงื่อนไขทั้งนี้ขึ้นอยู่กับว่าการสังเกตการณ์เมื่อเริ่มต้นชุดข้อมูลใช้เพื่ออุ่นเครื่องกระบวนการ AR หรือไม่ โดยค่าเริ่มต้นวิธีอาร์เรย์น้อยสุดเงื่อนไขแบบอาร์เรย์จะใช้ข้อสังเกตทั้งหมดและสันนิษฐานค่าศูนย์สำหรับระยะเวลาเริ่มต้นของข้อกำหนดเชิงอัตรกรรม เมื่อใช้ตัวเลือก M คุณสามารถขอให้ AR ใช้วิธีการที่ไม่มีเงื่อนไขอย่างน้อยที่สุด (ULS) หรือ Maximum-likelihood (ML) แทนได้ ตัวอย่างเช่นการอภิปรายเกี่ยวกับวิธีการเหล่านี้มีอยู่ในส่วน AR เงื่อนไขเริ่มต้น เมื่อใช้ตัวเลือก MCLS n คุณสามารถขอให้มีการใช้การสังเกต n แรกเพื่อคำนวณค่าประมาณของการล่วงประเวณีเริ่มต้น ในกรณีนี้การวิเคราะห์จะเริ่มต้นด้วยการสังเกตการณ์ n 1. ตัวอย่างเช่นคุณสามารถใช้มาโคร AR เพื่อใช้โมเดลอัตถิภาวนากับตัวแปรภายนอกได้แทนที่จะใช้คำจำกัดความข้อผิดพลาดโดยใช้ตัวเลือก TYPEV ตัวอย่างเช่นถ้าคุณต้องการเพิ่มห้าลาก่อนที่ผ่านมาของ Y ไปยังสมการในตัวอย่างก่อนหน้าคุณสามารถใช้ AR เพื่อสร้างพารามิเตอร์และล่าช้าโดยใช้คำสั่งต่อไปนี้: งบก่อนหน้านี้สร้างผลลัพธ์ที่แสดงในรูป 18.60 รูป 18.60 ตัวเลือกตัวเลือกรายการสำหรับรุ่น AR ของ Y โมเดลนี้คาดการณ์ว่า Y เป็นชุดค่าผสมเชิงเส้นของ X1, X2, การสกัดกั้นและค่าของ Y ในช่วงห้างวดล่าสุด การกำหนดอัตลักษณ์ของเวกเตอร์ที่ไม่ จำกัด เพื่อสร้างแบบจำลองข้อผิดพลาดของชุดสมการเป็นกระบวนการอัตรอัตรกรเชิงอัตรณ์แบบเวกเตอร์ให้ใช้รูปแบบอาร์เรย์ AR ต่อไปนี้หลังจากสมการ: ค่า processname คือชื่อใด ๆ ที่คุณจ่ายให้ AR เพื่อใช้ในการสร้างชื่อสำหรับอัตรอัตรอัตรณ์ พารามิเตอร์ คุณสามารถใช้มาโคร AR เพื่อสร้างกระบวนการ AR หลาย ๆ แบบสำหรับชุดสมการต่างๆโดยใช้ชื่อกระบวนการที่แตกต่างกันสำหรับแต่ละชุด ชื่อกระบวนการทำให้แน่ใจได้ว่าชื่อตัวแปรที่ใช้จะไม่ซ้ำกัน ใช้ค่า processname สั้น ๆ สำหรับกระบวนการนี้ถ้าต้องประมาณค่าพารามิเตอร์ให้กับชุดข้อมูลขาออก มาโคร AR พยายามสร้างชื่อพารามิเตอร์ให้น้อยกว่าหรือเท่ากับแปดอักขระ แต่มีข้อ จำกัด ตามความยาวของ processname ซึ่งใช้เป็นคำนำหน้าสำหรับชื่อพารามิเตอร์ AR ตัวแปร variablelist คือรายการของตัวแปรภายในสำหรับสมการ ตัวอย่างเช่นสมมติว่าข้อผิดพลาดสำหรับสมการ Y1, Y2 และ Y3 ถูกสร้างขึ้นโดยกระบวนการอัตถิภาวนิยมแบบเวกเตอร์ลำดับที่สอง คุณสามารถใช้คำสั่งต่อไปนี้: ซึ่งสร้างข้อมูลต่อไปนี้สำหรับ Y1 และรหัสที่คล้ายกันสำหรับ Y2 และ Y3: สามารถใช้วิธีการเวกเตอร์เท่านั้นสำหรับวิธีเวคเตอร์เท่านั้น นอกจากนี้คุณยังสามารถใช้แบบฟอร์มเดียวกันกับข้อ จำกัด ที่ว่าค่าสัมประสิทธิ์เมทริกซ์เป็น 0 ที่ระยะเวลาที่เลือก ตัวอย่างเช่นข้อความต่อไปนี้ใช้กระบวนการเวกเตอร์ลำดับที่สามกับข้อผิดพลาดของสมการกับค่าสัมประสิทธิ์ทั้งหมดที่ความล่าช้า 2 จำกัด ไว้ที่ 0 และมีค่าสัมประสิทธิ์ที่ lags 1 และ 3 ที่ไม่ จำกัด : คุณสามารถจำลองสามชุด Y1Y3 เป็นกระบวนการอัตโนมัติแบบเวกเตอร์ ในตัวแปรแทนข้อผิดพลาดโดยใช้ตัวเลือก TYPEV ถ้าคุณต้องการจำลอง Y1Y3 เป็นฟังก์ชันของค่าที่ผ่านมาของ Y1Y3 และตัวแปรภายนอกหรือค่าคงที่บางตัวคุณสามารถใช้ AR เพื่อสร้างข้อความสำหรับข้อกำหนดล่าช้าได้ เขียนสมการสำหรับแต่ละตัวแปรสำหรับส่วนที่ไม่เป็นไปตามแนวตั้งของโมเดลจากนั้นให้เรียก AR พร้อมกับตัวเลือก TYPEV ตัวอย่างเช่นส่วนที่ไม่เป็นไปตามแนวความคิดของแบบจำลองสามารถเป็นหน้าที่ของตัวแปรภายนอกหรือสามารถตัดพารามิเตอร์ได้ หากไม่มีองค์ประกอบภายนอกที่เป็นแบบจำลองการโต้วาทีแบบเวกเตอร์รวมทั้งไม่มีการสกัดกั้นให้กำหนดค่าเป็นศูนย์ให้กับแต่ละตัวแปร ต้องมีการกำหนดให้กับแต่ละตัวแปรก่อนที่จะเรียกว่า AR ตัวอย่างนี้เป็นตัวอย่างของเวกเตอร์ Y (Y1 Y2 Y3) เป็นฟังก์ชันเชิงเส้นของค่าในช่วงสองช่วงก่อนหน้านี้และมีรูปแบบข้อผิดพลาดของสีขาว โมเดลมีพารามิเตอร์ 18 (3 3 3 3) ไวยากรณ์ของ AR Macro มีสองกรณีของไวยากรณ์ของแมโคร AR เมื่อข้อ จำกัด เกี่ยวกับกระบวนการเวกเตอร์ AR ไม่จำเป็นต้องใช้ไวยากรณ์ของมาโคร AR มีรูปแบบทั่วไประบุคำนำหน้าสำหรับ AR เพื่อใช้ในการสร้างชื่อของตัวแปรที่จำเป็นสำหรับการกำหนดกระบวนการ AR ถ้าไม่มีการระบุ endolist รายการ endogenous จะตั้งชื่อ ซึ่งจะต้องเป็นชื่อของสมการที่จะใช้กระบวนการข้อผิดพลาด AR ค่าชื่อต้องมีไม่เกิน 32 อักขระ เป็นลำดับของกระบวนการ AR ระบุรายการสมการที่จะใช้กระบวนการ AR ถ้ามีมากกว่าหนึ่งชื่อจะมีการสร้างกระบวนการเวกเตอร์ที่ไม่ จำกัด โดยมีส่วนที่เหลืออยู่ของสมการทั้งหมดที่รวมอยู่ใน regressors ในแต่ละสมการ ถ้าไม่ได้ระบุค่าเริ่มต้น endolist เพื่อตั้งชื่อ ระบุรายการล่าช้าที่จะเพิ่มเงื่อนไข AR ค่าสัมประสิทธิ์ของข้อตกลงที่ล่าช้าไม่อยู่ในรายการจะถูกตั้งค่าเป็น 0 ความล่าช้าที่ระบุทั้งหมดต้องน้อยกว่าหรือเท่ากับ nlag และต้องไม่มีรายการที่ซ้ำกัน ถ้าไม่ได้ระบุค่าล๊อคเกอร์จะผิดนัดกับ nlag ทั้งหมด 1 ถึง 1 ระบุวิธีการประมาณค่าที่จะใช้ ค่าที่ถูกต้องของ M คือ CLS (การประมาณการกำลังสองน้อยสุดเงื่อนไข), ULS (ค่าประมาณน้อยสุดที่ไม่มีเงื่อนไขโดยไม่มีเงื่อนไข) และ ML (ค่าประมาณความน่าจะเป็นสูงสุด) MCLS เป็นค่าเริ่มต้น อนุญาตเฉพาะ MCLS เมื่อมีการระบุสมการมากกว่าหนึ่งสมการเท่านั้น วิธีการ ULS และ ML ไม่ได้รับการสนับสนุนสำหรับโมเดล AR ของเวกเตอร์โดย AR ระบุว่ากระบวนการ AR จะถูกนำไปใช้กับตัวแปรภายในตัวเองแทนการเหลือโครงสร้างของสมการ คุณสามารถควบคุมพารามิเตอร์ที่จะรวมอยู่ในกระบวนการ จำกัด ด้วยพารามิเตอร์ 0 เหล่านี้ที่คุณไม่ได้รวมไว้ ขั้นแรกให้ใช้ AR กับตัวเลือก DEFER เพื่อประกาศรายการตัวแปรและกำหนดขนาดของกระบวนการ จากนั้นใช้อาร์เรย์อาร์เรย์เพิ่มเติมเพื่อสร้างเงื่อนไขสำหรับสมการที่เลือกด้วยตัวแปรที่เลือกในช่วงเวลาที่เลือก ตัวอย่างเช่นสมการข้อผิดพลาดที่ผลิตมีดังต่อไปนี้โมเดลนี้ระบุว่าข้อผิดพลาดสำหรับ Y1 ขึ้นอยู่กับข้อผิดพลาดของทั้ง Y1 และ Y2 (แต่ไม่ใช่ Y3) ที่ทั้งล่าช้า 1 และ 2 และข้อผิดพลาดของ Y2 และ Y3 ขึ้นอยู่กับ ข้อผิดพลาดก่อนหน้านี้สำหรับตัวแปรทั้งสาม แต่เฉพาะที่ล่าช้า 1 อาร์คันซอไวยากรณ์สำหรับ AR ที่ถูก จำกัด การใช้ทางเลือกของ AR ได้รับอนุญาตให้กำหนดข้อ จำกัด ในกระบวนการเวกเตอร์ AR โดยการเรียก AR หลายครั้งเพื่อระบุเงื่อนไข AR ที่แตกต่างกันและล่าช้าสำหรับการที่แตกต่างกัน สมการ การเรียกครั้งแรกมีรูปแบบทั่วไประบุคำนำหน้าสำหรับ AR เพื่อใช้ในการสร้างชื่อของตัวแปรที่จำเป็นในการกำหนดกระบวนการ AR เวกเตอร์ ระบุลำดับของกระบวนการ AR ระบุรายการสมการที่จะใช้กระบวนการ AR ระบุว่า AR ไม่ใช่การสร้างกระบวนการ AR แต่ต้องรอข้อมูลเพิ่มเติมที่ระบุไว้ในการเรียก AR ในภายหลังสำหรับค่าชื่อเดียวกัน การโทรครั้งต่อไปจะมีรูปแบบทั่วไปเช่นเดียวกับในสายแรก ระบุรายการสมการที่จะใช้ข้อกำหนดในการเรียก AR นี้ เฉพาะชื่อที่ระบุไว้ใน endolist ค่าของสายแรกสำหรับชื่อค่าสามารถปรากฏในรายการของสมการใน eqlist ระบุรายชื่อสมการที่เหลืออยู่ของโครงสร้างที่เหลือจะถูกรวมเป็นตัวถดถอยในสมการใน eqlist เฉพาะชื่อใน endolist ของการเรียกครั้งแรกสำหรับค่าชื่อสามารถปรากฏใน varlist หากไม่ได้ระบุค่าเริ่มต้นของ varlist เพื่อ endolist ระบุรายการล่าช้าที่จะเพิ่มเงื่อนไข AR ค่าสัมบูรณ์ของข้อตกลงที่ล่าช้าไม่อยู่ในรายการถูกตั้งค่าเป็น 0 ความล่าช้าที่ระบุทั้งหมดต้องน้อยกว่าหรือเท่ากับค่าของ nlag และต้องไม่มีรายการที่ซ้ำกัน หากไม่ได้ระบุไว้ค่าเริ่มต้น laglist ไปยัง lags ทั้งหมด 1 ถึง nlag มาโครแมโครแมโคร SAS แมโคสร้างแถลงการเขียนโปรแกรมสำหรับ PROC MODEL สำหรับโมเดลเฉลี่ยเคลื่อนที่ MA แมโครเป็นส่วนหนึ่งของซอฟต์แวร์ SASETS และไม่มีตัวเลือกพิเศษที่จำเป็นในการใช้แมโคร กระบวนการความผิดพลาดโดยเฉลี่ยเคลื่อนที่สามารถใช้กับข้อผิดพลาดของสมการโครงสร้าง ไวยากรณ์ของ MA แมโครจะเหมือนกับแมโคร AR ยกเว้นไม่มีอาร์กิวเมนต์ TYPE เมื่อคุณใช้มาโคร MA และ AR รวมแมโคร MA ต้องเป็นไปตามมาโคร AR ข้อความ SASIML ต่อไปนี้ก่อให้เกิดข้อผิดพลาด ARMA (1, (1 3)) และบันทึกไว้ในชุดข้อมูล MADAT2 งบ PROC MODEL ต่อไปนี้ใช้เพื่อประมาณค่าพารามิเตอร์ของโมเดลนี้โดยใช้โครงสร้างข้อผิดพลาดสูงสุด: การประมาณค่าพารามิเตอร์ที่สร้างขึ้นโดยการดำเนินการนี้จะแสดงในรูปที่ 18.61 รูปที่ 18.61 ค่าประมาณจาก ARMA (1, (1 3)) Process มีไวยากรณ์ MA แมนวลสองกรณี เมื่อข้อ จำกัด ในกระบวนการเวกเตอร์แมสซาชูเซตส์ไม่จำเป็นต้องมีไวยากรณ์ของมาโครแมสซาชูเซตส์มีรูปแบบทั่วไประบุคำนำหน้าสำหรับแมสซาชูเซตส์ที่จะใช้ในการสร้างชื่อของตัวแปรที่จำเป็นในการกำหนดกระบวนการแมสซาชูเซตส์และเป็น endolist เริ่มต้น คือลำดับของกระบวนการ MA ระบุสมการที่จะใช้กระบวนการ MA ถ้ามีมากกว่าหนึ่งชื่อการประมาณค่า CLS จะใช้สำหรับกระบวนการเวกเตอร์ ระบุความล่าช้าที่จะเพิ่ม MA terms ความล่าช้าที่ระบุทั้งหมดต้องน้อยกว่าหรือเท่ากับ nlag และต้องไม่มีรายการที่ซ้ำกัน ถ้าไม่ได้ระบุค่าล๊อคเกอร์จะผิดนัดกับ nlag ทั้งหมด 1 ถึง 1 ระบุวิธีการประมาณค่าที่จะใช้ ค่าที่ถูกต้องของ M คือ CLS (การประมาณการกำลังสองน้อยสุดเงื่อนไข), ULS (ค่าประมาณน้อยสุดที่ไม่มีเงื่อนไขโดยไม่มีเงื่อนไข) และ ML (ค่าประมาณความน่าจะเป็นสูงสุด) MCLS เป็นค่าเริ่มต้น อนุญาตเฉพาะ MCLS เมื่อมีการระบุสมการมากกว่าหนึ่งสมการใน endolist แมโครไวยากรณ์แมโครสำหรับการเคลื่อนที่แบบเวกเตอร์ที่ถูก จำกัด การใช้ MA แบบอื่นสามารถใช้กำหนดข้อ จำกัด ในการประมวลผลเวกเตอร์แมสซาชูเซตส์โดยการเรียก MA หลายครั้งเพื่อระบุเงื่อนไข MA ที่แตกต่างกันและล่าช้าสำหรับสมการที่ต่างกัน การเรียกครั้งแรกมีรูปแบบทั่วไประบุคำนำหน้าสำหรับ MA เพื่อใช้ในการสร้างชื่อของตัวแปรที่จำเป็นในการกำหนดเวกเตอร์แมสซาชูเซตส์ ระบุลำดับของกระบวนการ MA ระบุรายการสมการที่จะใช้กระบวนการ MA ระบุว่า MA ไม่ได้สร้างกระบวนการ MA แต่ต้องรอข้อมูลเพิ่มเติมที่ระบุไว้ในการเรียก MA ในภายหลังสำหรับค่าชื่อเดียวกัน การโทรครั้งต่อไปจะมีรูปแบบทั่วไปเช่นเดียวกับในสายแรก ระบุรายการสมการที่จะใช้ข้อกำหนดในการโทร MA นี้ ระบุรายชื่อสมการที่เหลืออยู่ของโครงสร้างที่เหลือจะถูกรวมเป็นตัวถดถอยในสมการใน eqlist ระบุรายการของความล่าช้าที่ MA เงื่อนไขจะมีการเพิ่มโมเดลการเพิ่มค่าเฉลี่ยและการอธิบายเป็นขั้นตอนแรกในการย้ายเกินกว่าโมเดลหมายถึงแบบจำลองการเดินแบบสุ่มและแบบจำลองแนวโน้มเชิงเส้นรูปแบบและแนวโน้ม nesyasonal สามารถอนุมานโดยใช้การย้าย รูปแบบการถ่วงหรือราบเรียบ สมมติฐานพื้นฐานที่อยู่เบื้องหลังรูปแบบเฉลี่ยและราบเรียบคือชุดเวลาเป็นแบบคงที่ในท้องถิ่นที่มีค่าเฉลี่ยที่เปลี่ยนแปลงไปอย่างช้าๆ ดังนั้นเราจึงใช้ค่าเฉลี่ยเคลื่อนที่ (ท้องถิ่น) เพื่อประมาณค่าปัจจุบันของค่าเฉลี่ยและใช้เป็นค่าพยากรณ์สำหรับอนาคตอันใกล้นี้ ซึ่งถือได้ว่าเป็นการประนีประนอมระหว่างโมเดลเฉลี่ยและแบบสุ่มโดยไม่มีการเลื่อนลอย กลยุทธ์เดียวกันสามารถใช้ในการประมาณและคาดการณ์แนวโน้มในท้องถิ่น ค่าเฉลี่ยเคลื่อนที่มักถูกเรียกว่า quotsmoothedquot version ของชุดเดิมเนื่องจากค่าเฉลี่ยในระยะสั้นมีผลต่อการทำให้เรียบออกกระแทกในชุดเดิม โดยการปรับระดับการทำให้เรียบ (ความกว้างของค่าเฉลี่ยเคลื่อนที่) เราสามารถคาดหวังให้เกิดความสมดุลระหว่างประสิทธิภาพของโมเดลแบบเฉลี่ยและแบบสุ่ม รูปแบบเฉลี่ยที่ง่ายที่สุดคือ ค่าเฉลี่ยของค่าเฉลี่ยของ Y ที่เวลา t1 ที่ทำในเวลา t เท่ากับค่าเฉลี่ยที่แท้จริงของการสังเกตการณ์ m ล่าสุด: (ที่นี่และที่อื่น ๆ ฉันจะใช้สัญลักษณ์ 8220Y-hat8221 เพื่อยืน สำหรับการคาดการณ์ของชุดข้อมูล Y เวลาที่เร็วที่สุดเท่าที่เป็นไปได้ก่อนวันที่โดยรูปแบบที่กำหนด) ค่าเฉลี่ยนี้เป็นศูนย์กลางในช่วง t - (m1) 2 ซึ่งหมายความว่าค่าประมาณของท้องถิ่นจะมีแนวโน้มลดลงหลังค่าจริง ค่าเฉลี่ยของท้องถิ่นโดยประมาณ (m1) 2 ช่วงเวลา ดังนั้นเราจึงกล่าวว่าอายุโดยเฉลี่ยของข้อมูลในค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายคือ (m1) 2 เทียบกับช่วงเวลาที่คาดการณ์การคำนวณ: นี่คือระยะเวลาโดยที่การคาดการณ์จะมีแนวโน้มลดลงหลังจุดหักเหในข้อมูล . ตัวอย่างเช่นถ้าคุณคิดค่าเฉลี่ย 5 ค่าล่าสุดการคาดการณ์จะประมาณ 3 ช่วงเวลาในการตอบสนองต่อจุดหักเห โปรดทราบว่าถ้า m1 โมเดลเฉลี่ยเคลื่อนที่โดยเฉลี่ย (SMA) เทียบเท่ากับรูปแบบการเดินแบบสุ่ม (โดยไม่มีการเติบโต) ถ้า m มีขนาดใหญ่มาก (เทียบกับความยาวของระยะเวลาประมาณ) รูปแบบ SMA จะเท่ากับรูปแบบเฉลี่ย เช่นเดียวกับพารามิเตอร์ใด ๆ ของรูปแบบการคาดการณ์การปรับค่าของ k จะเป็นเรื่องปกติที่จะได้รับข้อมูลที่ดีที่สุดนั่นคือข้อผิดพลาดในการคาดการณ์ที่เล็กที่สุดโดยเฉลี่ย นี่คือตัวอย่างของชุดที่ดูเหมือนจะแสดงความผันผวนแบบสุ่มรอบ ๆ ค่าเฉลี่ยที่เปลี่ยนแปลงไปอย่างช้าๆ อันดับแรกให้ลองพอดีกับรูปแบบการเดินแบบสุ่มซึ่งเท่ากับค่าเฉลี่ยเคลื่อนที่ที่สั้น ๆ ของ 1 เทอม: รูปแบบการเดินแบบสุ่มตอบสนองได้อย่างรวดเร็วต่อการเปลี่ยนแปลงในซีรีส์ แต่ในการทำเช่นนี้จะทำให้ได้คำที่ไม่เหมาะสมใน ข้อมูล (ความผันผวนแบบสุ่ม) รวมทั้ง quotsignalquot (ค่าเฉลี่ยในท้องถิ่น) ถ้าเราลองใช้ค่าเฉลี่ยเคลื่อนที่ 5 ข้อโดยทั่วไปเราจะได้รับการคาดการณ์ที่นุ่มนวลกว่า: ค่าเฉลี่ยเคลื่อนที่ 5 เทอมทำให้เกิดข้อผิดพลาดน้อยกว่าแบบจำลองการเดินแบบสุ่มในกรณีนี้ อายุเฉลี่ยของข้อมูลในการคาดการณ์นี้คือ 3 ((51) 2) ดังนั้นจึงมีแนวโน้มที่จะล่าช้ากว่าจุดหักเหภายในสามช่วงเวลา (ตัวอย่างเช่นการชะลอตัวน่าจะเกิดขึ้นในช่วง 21 แต่การคาดการณ์ไม่ได้ผกผันไปหลายช่วงเวลาภายหลัง) สังเกตว่าการคาดการณ์ระยะยาวจากแบบจำลอง SMA เป็นแนวเส้นตรงเช่นเดียวกับการเดินแบบสุ่ม แบบ ดังนั้นรูปแบบ SMA สมมติว่าไม่มีแนวโน้มในข้อมูล อย่างไรก็ตามในขณะที่การคาดการณ์จากรูปแบบการเดินแบบสุ่มมีค่าเท่ากับค่าที่สังเกตได้ล่าสุดการคาดการณ์จากรูปแบบ SMA จะเท่ากับค่าเฉลี่ยถ่วงน้ำหนักของค่าล่าสุด วงเงินความเชื่อมั่นที่คำนวณโดย Statgraphics สำหรับการคาดการณ์ในระยะยาวของค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายจะไม่ได้รับมากขึ้นเนื่องจากระยะขอบพยากรณ์อากาศเพิ่มขึ้น เห็นได้ชัดว่าไม่ถูกต้อง แต่น่าเสียดายที่ไม่มีทฤษฎีทางสถิติพื้นฐานที่บอกเราว่าช่วงความเชื่อมั่นควรจะกว้างขึ้นสำหรับรุ่นนี้อย่างไร อย่างไรก็ตามไม่ยากที่จะคำนวณค่าประมาณเชิงประจักษ์ถึงขีดจำกัดความเชื่อมั่นสำหรับการคาดการณ์ระยะยาวของเส้นขอบฟ้า ตัวอย่างเช่นคุณสามารถตั้งค่าสเปรดชีตที่จะใช้โมเดล SMA เพื่อคาดการณ์ล่วงหน้า 2 ขั้นตอนล่วงหน้า 3 ก้าวเป็นต้นภายในตัวอย่างข้อมูลที่ผ่านมา จากนั้นคุณสามารถคำนวณส่วนเบี่ยงเบนมาตรฐานตัวอย่างของข้อผิดพลาดในขอบฟ้าพยากรณ์แต่ละครั้งและสร้างช่วงความเชื่อมั่นสำหรับการคาดการณ์ในระยะยาวโดยการเพิ่มและลบคูณของส่วนเบี่ยงเบนมาตรฐานที่เหมาะสม ถ้าเราลองค่าเฉลี่ยเคลื่อนที่ 9 วันเราจะได้รับการคาดการณ์ที่ราบรื่นขึ้นและผลกระทบที่ปกคลุมด้วยวัตถุฉนวน: อายุเฉลี่ยอยู่ที่ 5 ช่วงเวลา ((91) 2) ถ้าเราใช้ค่าเฉลี่ยเคลื่อนที่ในระยะ 19 วันอายุเฉลี่ยจะเพิ่มขึ้นเป็น 10: สังเกตว่าแท้จริงแล้วการคาดการณ์ในขณะนี้ล้าหลังจุดหักเหประมาณ 10 รอบ นี่คือตารางที่เปรียบเทียบสถิติข้อผิดพลาดของพวกเขาซึ่งรวมถึงค่าเฉลี่ยระยะยาว 3 คำ: Model C ซึ่งเป็นค่าเฉลี่ยเคลื่อนที่ 5 เทอมให้ผลตอบแทนน้อยที่สุดของ RMSE โดยมีขอบเล็กกว่า 3 ค่าเฉลี่ยระยะสั้นและระยะ 9 และสถิติอื่น ๆ ของพวกเขาเกือบจะเท่ากัน ดังนั้นในแบบจำลองที่มีสถิติข้อผิดพลาดที่คล้ายกันมากเราสามารถเลือกได้ว่าจะต้องการการตอบสนองเล็กน้อยหรือมีความเรียบขึ้นเล็กน้อยในการคาดการณ์หรือไม่ (ค่าเฉลี่ยเคลื่อนที่ถ่วงน้ำหนักที่ชี้แจง) แบบจำลองค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายที่กล่าวมาข้างต้นมีคุณสมบัติที่ไม่พึงประสงค์ที่จะถือว่าข้อสังเกตสุดท้ายของ k อย่างเท่าเทียมกันและสมบูรณ์ละเว้นการสังเกตทั้งหมดก่อนหน้านี้ โดยนัยข้อมูลที่ผ่านมาควรจะลดราคาในรูปแบบที่ค่อยๆมากขึ้นตัวอย่างเช่นการสังเกตล่าสุดควรมีน้ำหนักมากกว่า 2 ครั้งล่าสุดและครั้งที่ 2 ล่าสุดควรมีน้ำหนักน้อยกว่า 3 ครั้งล่าสุดและ อื่น ๆ แบบเรียบง่าย (SES) ทำให้สำเร็จได้ ให้ 945 แสดงถึงค่าคงที่ quotsmoothing (ตัวเลขระหว่าง 0 ถึง 1) วิธีหนึ่งในการเขียนแบบจำลองคือการกำหนดชุด L ซึ่งแสดงถึงระดับปัจจุบัน (นั่นคือค่าเฉลี่ยในท้องถิ่น) ของชุดข้อมูลดังกล่าวโดยประมาณจากข้อมูลจนถึงปัจจุบัน ค่าของ L ที่เวลา t คำนวณจากค่าก่อนหน้าของตัวเองเช่นนี้ดังนั้นค่าที่เรียบนวลในปัจจุบันเป็นค่า interpolation ระหว่างค่าที่ได้จากการเรียบก่อนหน้าและการสังเกตการณ์ในปัจจุบันซึ่ง 945 จะควบคุมความใกล้ชิดของค่า interpolation กับค่าล่าสุด การสังเกต การคาดการณ์ในช่วงถัดไปเป็นเพียงค่าที่ได้รับการปรับปรุงในปัจจุบัน: เทียบเท่าเราสามารถแสดงการคาดการณ์ต่อไปได้โดยตรงในแง่ของการคาดการณ์ก่อนหน้านี้และข้อสังเกตก่อนหน้าในเวอร์ชันเทียบเท่าใด ๆ ต่อไปนี้ ในรุ่นแรกการคาดการณ์คือการแก้ไขระหว่างการคาดการณ์ก่อนหน้าและการสังเกตก่อนหน้านี้: ในรุ่นที่สองการคาดการณ์ครั้งต่อไปจะได้รับโดยการปรับการคาดการณ์ก่อนหน้านี้ในทิศทางของข้อผิดพลาดก่อนหน้าด้วยจำนวนเศษ 945 ข้อผิดพลาดเกิดขึ้นที่ เวลา t ในรุ่นที่สามการคาดการณ์คือค่าเฉลี่ยเคลื่อนที่ที่ถ่วงน้ำหนักแบบยกระดับ (เช่นลด) โดยมีปัจจัยการลดราคา 1-945: สูตรการคาดการณ์เวอร์ชันแก้ไขเป็นวิธีที่ง่ายที่สุดในการใช้งานหากคุณใช้โมเดลในสเปรดชีต: เหมาะกับรูปแบบ เซลล์เดี่ยวและมีการอ้างอิงเซลล์ชี้ไปที่การคาดการณ์ก่อนหน้านี้การสังเกตก่อนหน้าและเซลล์ที่เก็บค่า 945 ไว้ โปรดทราบว่าถ้า 945 1 รูปแบบ SES จะเทียบเท่ากับรูปแบบการเดินแบบสุ่ม (โดยไม่มีการเติบโต) ถ้า 945 0 รูปแบบ SES จะเท่ากับโมเดลเฉลี่ยโดยสมมติว่าค่าที่เรียบเป็นครั้งแรกจะเท่ากับค่าเฉลี่ย (กลับไปด้านบนสุดของหน้า) อายุโดยเฉลี่ยของข้อมูลในการคาดการณ์การเรียบอย่างง่ายและชี้แจงคือ 1 945 เทียบกับระยะเวลาที่คาดการณ์การคำนวณ (นี้ไม่ควรจะเป็นที่เห็นได้ชัด แต่ก็สามารถแสดงได้โดยการประเมินชุดอนันต์.) ดังนั้นการคาดการณ์ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายมีแนวโน้มที่จะล่าช้าหลังจุดหักเหประมาณ 1 945 รอบระยะเวลา ตัวอย่างเช่นเมื่อ 945 0.5 ความล่าช้าเป็น 2 ช่วงเวลาเมื่อ 945 0.2 ความล่าช้าเป็น 5 ช่วงเวลาที่ 945 0.1 ความล่าช้าเป็น 10 ช่วงเวลาและอื่น ๆ สำหรับอายุโดยเฉลี่ยที่ระบุ (เช่นจำนวนเงินที่ล่าช้า) การคาดการณ์การทำให้การทำให้ลื่นไหลเรียบแบบสมมุติแบบง่าย (SES) ค่อนข้างดีกว่าการคาดการณ์ค่าเฉลี่ยเคลื่อนที่อย่างง่าย (SMA) เนื่องจากมีน้ำหนักมากขึ้นในการสังเกตการณ์ล่าสุด - คือ มีการเปลี่ยนแปลงมากขึ้นในช่วงไม่กี่ปีที่ผ่านมา ตัวอย่างเช่นโมเดล SMA ที่มี 9 คำและแบบ SES ที่มี 945 0.2 มีอายุเฉลี่ยอยู่ที่ 5 สำหรับข้อมูลในการคาดการณ์ แต่แบบจำลอง SES จะให้น้ำหนักมากกว่า 3 ค่าที่มากกว่าแบบจำลอง SMA และที่ ในเวลาเดียวกันมันไม่ได้ 8220forget8221 เกี่ยวกับค่ามากกว่า 9 งวดเก่าดังที่แสดงในแผนภูมินี้ข้อได้เปรียบที่สำคัญอีกประการหนึ่งของโมเดล SES ในรูปแบบ SMA คือรูปแบบ SES ใช้พารามิเตอร์การปรับให้ราบเรียบซึ่งเป็นตัวแปรที่เปลี่ยนแปลงได้อย่างต่อเนื่อง โดยใช้อัลกอริธึม quotsolverquot เพื่อลดข้อผิดพลาดกำลังสองเฉลี่ย ค่าที่เหมาะสมที่สุดของ 945 ในแบบจำลอง SES สำหรับชุดข้อมูลนี้จะเท่ากับ 0.2961 ดังแสดงในที่นี้อายุเฉลี่ยของข้อมูลในการคาดการณ์นี้คือ 10.2961 3.4 งวดซึ่งใกล้เคียงกับค่าเฉลี่ยเคลื่อนที่ 6-term ระยะสั้น การคาดการณ์ระยะยาวจากแบบจำลอง SES เป็นแนวเส้นตรง เช่นเดียวกับในรูปแบบ SMA และรูปแบบการเดินแบบสุ่มโดยไม่มีการเติบโต อย่างไรก็ตามโปรดทราบว่าช่วงความเชื่อมั่นที่คำนวณโดย Statgraphics จะแตกต่างกันไปในรูปแบบที่ดูสมเหตุสมผลและมีความแคบกว่าช่วงความเชื่อมั่นสำหรับรูปแบบการเดินแบบสุ่ม แบบจำลอง SES อนุมานว่าชุดนี้ค่อนข้างจะคาดเดาได้มากกว่าแบบจำลองการเดินแบบสุ่ม แบบจำลอง SES เป็นกรณีพิเศษของรูปแบบ ARIMA ดังนั้นทฤษฎีสถิติของแบบจำลอง ARIMA จึงเป็นพื้นฐานที่ใช้ในการคำนวณช่วงความเชื่อมั่นสำหรับแบบจำลอง SES โดยเฉพาะอย่างยิ่งแบบจำลอง SES คือแบบจำลอง ARIMA ที่มีความแตกต่างอย่างไม่มีความแตกต่างกันหนึ่งคำ MA (1) และไม่มีระยะคงที่ หรือที่เรียกว่าโควต้า (0,1,1) โดยไม่มีค่าคงที่ ค่าสัมประสิทธิ์ MA (1) ในรูปแบบ ARIMA สอดคล้องกับจำนวน 1-945 ในแบบจำลอง SES ตัวอย่างเช่นถ้าคุณพอดีกับรูปแบบ ARIMA (0,1,1) โดยไม่มีค่าคงที่สำหรับชุดข้อมูลที่วิเคราะห์ที่นี่ค่าสัมประสิทธิ์ MA (1) โดยประมาณจะเท่ากับ 0.7029 ซึ่งใกล้เคียงกับค่า 0.2961 เป็นไปได้ที่จะเพิ่มสมมติฐานของแนวโน้มเชิงเส้นที่ไม่เป็นศูนย์ให้เป็นรูปแบบ SES ในการทำเช่นนี้เพียงแค่ระบุรูปแบบ ARIMA ที่มีความแตกต่างอย่างไม่มีความแตกต่างอย่างหนึ่งและเทอม MA (1) ที่มีค่าคงที่นั่นคือ ARIMA (0,1,1) โดยมีค่าคงที่ การคาดการณ์ในระยะยาวจะมีแนวโน้มที่เท่ากับแนวโน้มเฉลี่ยที่สังเกตได้ในช่วงประมาณทั้งหมด คุณไม่สามารถดำเนินการนี้ควบคู่กับการปรับฤดูกาลได้เนื่องจากตัวเลือกการปรับฤดูกาลจะถูกปิดใช้งานเมื่อตั้งค่าประเภทของรูปแบบเป็น ARIMA อย่างไรก็ตามคุณสามารถเพิ่มแนวโน้มการชี้แจงในระยะยาวที่คงที่สำหรับแบบจำลองการทำให้เรียบแบบเลขแจงที่เรียบง่าย (โดยมีหรือไม่มีการปรับฤดูกาล) โดยใช้ตัวเลือกการปรับค่าเงินเฟ้อในขั้นตอนการคาดการณ์ อัตราการเติบโตของอัตราแลกเปลี่ยน (quotation) ในแต่ละช่วงเวลาสามารถประมาณได้จากค่าสัมประสิทธิ์ความชันในรูปแบบเส้นตรงที่พอดีกับข้อมูลร่วมกับการแปลงลอการิทึมตามธรรมชาติหรืออาจขึ้นอยู่กับข้อมูลอื่น ๆ ที่เป็นอิสระเกี่ยวกับแนวโน้มการเติบโตในระยะยาว . (กลับไปด้านบนสุดของหน้า) Browns Linear (เช่น double) Exponential Smoothing โมเดล SMA และ SES สมมุติว่าไม่มีแนวโน้มใด ๆ ในข้อมูล (โดยปกติจะเป็นอย่างน้อยหรืออย่างน้อยก็ไม่เลวสำหรับ 1- การคาดการณ์ล่วงหน้าเมื่อข้อมูลมีเสียงดังมาก) และสามารถปรับเปลี่ยนเพื่อรวมแนวโน้มเชิงเส้นคงที่ดังที่แสดงไว้ข้างต้น สิ่งที่เกี่ยวกับแนวโน้มในระยะสั้นหากซีรี่ส์แสดงอัตราการเติบโตที่แตกต่างกันหรือรูปแบบตามวัฏจักรที่โดดเด่นชัดเจนเมื่อเทียบกับเสียงรบกวนและหากมีความจำเป็นต้องคาดการณ์ล่วงหน้ามากกว่า 1 รอบการคาดการณ์แนวโน้มในท้องถิ่นอาจเป็นไปได้ ปัญหา แบบจำลองการทำให้เรียบเรียบง่ายสามารถสรุปเพื่อให้ได้รูปแบบการเรียบแบบเสวนาเชิงเส้น (LES) ซึ่งจะคำนวณการประมาณระดับท้องถิ่นและระดับแนวโน้ม รูปแบบแนวโน้มที่แตกต่างกันตามเวลาที่ง่ายที่สุดคือสีน้ำตาลแบบเสแสร้งแบบเสียดสีแบบเรียบซึ่งใช้ทั้งสองแบบที่เรียบเนียนแตกต่างกันไปตามจุดต่าง ๆ ในเวลา สูตรพยากรณ์ขึ้นอยู่กับการอนุมานของเส้นผ่านทั้งสองศูนย์ (รุ่นที่ซับซ้อนมากขึ้นของรุ่นนี้ Holt8217s ถูกกล่าวถึงด้านล่าง) รูปแบบพีชคณิตของ Brown8217s เชิงเส้นแบบเรียบเช่นเดียวกับรูปแบบการเรียบง่ายชี้แจงสามารถแสดงในรูปแบบที่แตกต่างกัน แต่ที่เท่าเทียมกัน รูปแบบมาตรฐานของแบบจำลองนี้มักจะแสดงดังนี้: ให้ S หมายถึงชุดแบบเดี่ยวที่เรียบง่ายได้โดยใช้การเรียบง่ายแบบเลขยกตัวอย่างให้เป็นชุด Y นั่นคือค่าของ S ในช่วง t จะได้รับโดย: (จำได้ว่าภายใต้หลักการง่ายๆ exponential smoothing นี่คือการคาดการณ์ของ Y ในช่วง t1) จากนั้นให้ Squot แสดงชุดที่มีการคูณทวีคูณขึ้นโดยใช้การเรียบแบบเลขแจงธรรมดา (ใช้แบบเดียวกัน 945) กับชุด S: สุดท้ายการคาดการณ์สำหรับ Y tk สำหรับ kgt1 ใด ๆ ให้โดย: ผลตอบแทนนี้ e 1 0 (เช่นโกงเล็กน้อยและให้การคาดการณ์ครั้งแรกเท่ากับการสังเกตครั้งแรกจริง) และ e 2 Y 2 8211 Y 1 หลังจากที่คาดการณ์จะถูกสร้างโดยใช้สมการข้างต้น ค่านี้จะให้ค่าพอดีกับสูตรตาม S และ S ถ้าค่าเริ่มต้นใช้ S 1 S 1 Y 1 รุ่นของรุ่นนี้ใช้ในหน้าถัดไปที่แสดงให้เห็นถึงการรวมกันของการเรียบแบบเสวนากับการปรับฤดูกาลตามฤดูกาล Holt8217s Linear Exponential Smoothing Brown8217s แบบจำลอง LES คำนวณการประมาณระดับท้องถิ่นและแนวโน้มโดยการให้ข้อมูลที่ราบรื่น แต่ข้อเท็จจริงที่ว่าด้วยพารามิเตอร์เรียบเพียงอย่างเดียวจะกำหนดข้อ จำกัด ของรูปแบบข้อมูลที่สามารถพอดีกับระดับและแนวโน้มได้ ไม่ได้รับอนุญาตให้เปลี่ยนแปลงในอัตราที่เป็นอิสระ แบบจำลอง LES ของ Holt8217s กล่าวถึงปัญหานี้ด้วยการรวมค่าคงที่ที่ราบเรียบสองค่าหนึ่งค่าสำหรับหนึ่งและหนึ่งสำหรับแนวโน้ม ทุกเวลา t เช่นเดียวกับในรุ่น Brown8217s มีการประมาณการ L t ของระดับท้องถิ่นและประมาณการ T t ของแนวโน้มในท้องถิ่น ที่นี่พวกเขาจะได้รับการคำนวณจากค่าของ Y ที่สังเกตได้ในเวลา t และการประมาณค่าก่อนหน้าของระดับและแนวโน้มโดยสมการสองตัวที่ใช้การอธิบายแบบเอกซ์โพเน็นเชียลให้เรียบขึ้น หากระดับและแนวโน้มโดยประมาณของเวลา t-1 คือ L t82091 และ T t-1 ตามลำดับจากนั้นคาดว่า Y tshy ที่จะทำในเวลา t-1 เท่ากับ L t-1 T t-1 เมื่อมีการสังเกตค่าจริงค่าประมาณระดับที่ปรับปรุงใหม่จะถูกคำนวณโดยการ interpolating ระหว่าง Y tshy และการคาดการณ์ L t-1 T t-1 โดยใช้น้ำหนักของ 945 และ 1-945 การเปลี่ยนแปลงระดับโดยประมาณ, คือ L t 8209 L t82091 สามารถตีความได้ว่าเป็นสัญญาณรบกวนของแนวโน้มในเวลา t การประมาณการแนวโน้มของแนวโน้มจะถูกคำนวณโดยการ interpolating ระหว่าง L t 8209 L t82091 และประมาณการก่อนหน้าของแนวโน้ม T t-1 โดยใช้เครื่องชั่ง 946 และ 1-946 การตีความค่าคงที่การทรงตัวของกระแส 946 มีความคล้ายคลึงกับค่าคงที่ของการปรับให้เรียบระดับ 945 โมเดลที่มีค่าน้อย 946 อนุมานได้ว่าแนวโน้มมีการเปลี่ยนแปลงเพียงอย่างช้าๆเมื่อเวลาผ่านไป ใหญ่กว่า 946 สมมติว่ามีการเปลี่ยนแปลงอย่างรวดเร็ว แบบจำลองที่มีขนาดใหญ่ 946 เชื่อว่าในอนาคตอันใกล้นี้มีความไม่แน่นอนมากเนื่องจากข้อผิดพลาดในการคาดการณ์แนวโน้มกลายเป็นสิ่งสำคัญมากเมื่อคาดการณ์ล่วงหน้ามากกว่าหนึ่งช่วง (กลับไปด้านบนสุดของหน้า) ค่าคงที่ที่ราบเรียบ 945 และ 946 สามารถประมาณได้ตามปกติโดยลดข้อผิดพลาดของค่าเฉลี่ยของการคาดการณ์ล่วงหน้า 1 ขั้นตอน เมื่อทำใน Statgraphics ค่าประมาณนี้จะเท่ากับ 945 0.3048 และ 946 0.008 ค่าที่น้อยมากของ 946 หมายความว่ารูปแบบสมมติว่ามีการเปลี่ยนแปลงน้อยมากในแนวโน้มจากระยะหนึ่งไปยังอีกรูปแบบหนึ่งดังนั้นโดยทั่วไปโมเดลนี้กำลังพยายามประมาณแนวโน้มในระยะยาว โดยการเปรียบเทียบกับความคิดของอายุโดยเฉลี่ยของข้อมูลที่ใช้ในการประมาณระดับท้องถิ่นของชุดข้อมูลอายุโดยเฉลี่ยของข้อมูลที่ใช้ในการประเมินแนวโน้มในท้องถิ่นเป็นสัดส่วนกับ 1 946 แม้ว่าจะไม่เท่ากันก็ตาม . ในกรณีนี้ที่กลายเป็น 10.006 125 นี่เป็นตัวเลขที่แม่นยำมากที่สุดเท่าที่ความถูกต้องของค่าประมาณ 946 isn8217t จริง ๆ 3 ตำแหน่งทศนิยม แต่มันก็เป็นเรื่องธรรมดาของขนาดตามตัวอย่างขนาด 100 ดังนั้น รุ่นนี้มีค่าเฉลี่ยมากกว่าค่อนข้างมากของประวัติศาสตร์ในการประมาณแนวโน้ม พล็อตการคาดการณ์ด้านล่างแสดงให้เห็นว่าโมเดล LES ประมาณการแนวโน้มท้องถิ่นในวงกว้างขึ้นเล็กน้อยที่ส่วนท้ายของชุดข้อมูลมากกว่าแนวโน้มที่คงที่ในแบบจำลอง SEStrend นอกจากนี้ค่าประมาณของ 945 เกือบจะเหมือนกันกับที่ได้จากการปรับรุ่น SES ที่มีหรือไม่มีแนวโน้มดังนั้นเกือบจะเป็นแบบเดียวกัน ตอนนี้ดูเหมือนว่าการคาดการณ์ที่สมเหตุสมผลสำหรับโมเดลที่ควรจะประเมินแนวโน้มในระดับท้องถิ่นดูเหมือนว่าแนวโน้มในท้องถิ่นมีแนวโน้มลดลงในตอนท้ายของชุดข้อมูลสิ่งที่เกิดขึ้นพารามิเตอร์ของรุ่นนี้ ได้รับการประเมินโดยการลดข้อผิดพลาดสี่เหลี่ยมของการคาดการณ์ล่วงหน้า 1 ขั้นตอนไม่ใช่การคาดการณ์ในระยะยาวซึ่งในกรณีนี้แนวโน้มไม่ได้สร้างความแตกต่างมากนัก หากสิ่งที่คุณกำลังมองหาคือข้อผิดพลาด 1 ขั้นตอนคุณจะไม่เห็นภาพใหญ่ของแนวโน้มในช่วง 10 หรือ 20 ครั้ง เพื่อให้โมเดลนี้สอดคล้องกับการคาดการณ์ข้อมูลลูกตาของเรามากขึ้นเราจึงสามารถปรับค่าคงที่การปรับให้เรียบตามแนวโน้มเพื่อให้ใช้พื้นฐานที่สั้นกว่าสำหรับการประมาณแนวโน้ม ตัวอย่างเช่นถ้าเราเลือกที่จะตั้งค่า 946 0.1 แล้วอายุเฉลี่ยของข้อมูลที่ใช้ในการประเมินแนวโน้มท้องถิ่นคือ 10 ช่วงเวลาซึ่งหมายความว่าเรามีค่าเฉลี่ยของแนวโน้มมากกว่าช่วงเวลา 20 ช่วงที่ผ่านมา Here8217s พล็อตการคาดการณ์มีลักษณะอย่างไรถ้าเราตั้งค่า 946 0.1 ขณะเก็บรักษา 945 0.3 นี่ดูเหมาะสมสำหรับชุดนี้แม้ว่าจะเป็นแนวโน้มที่จะคาดการณ์แนวโน้มดังกล่าวได้ไม่น้อยกว่า 10 งวดในอนาคต สิ่งที่เกี่ยวกับสถิติข้อผิดพลาดนี่คือการเปรียบเทียบรูปแบบสำหรับสองรุ่นที่แสดงข้างต้นเช่นเดียวกับสามรุ่น SES ค่าที่เหมาะสมที่สุดคือ 945 สำหรับรุ่น SES มีค่าประมาณ 0.3 แต่ผลการค้นหาที่คล้ายกัน (มีการตอบสนองน้อยหรือน้อยตามลำดับ) จะได้รับค่า 0.5 และ 0.2 (A) Holts linear exp. การให้ความนุ่มนวลด้วย alpha 0.3048 และ beta 0.008 (B) Holts linear exp. การทำให้เรียบด้วยเอ็กซ์พี 0.3 และเบต้า 0.1 (C) การเพิ่มความเรียบง่ายด้วยการอธิบายด้วย alpha 0.5 (D) การทำให้เรียบอย่างง่ายด้วยเอ็กซ์โป 0.3 (E) การเรียบง่ายด้วยเลขแจงอัลฟา 0.2 สถิติของพวกเขาใกล้เคียงกันมากดังนั้นเราจึงสามารถเลือกได้บนพื้นฐาน ข้อผิดพลาดในการคาดการณ์ล่วงหน้า 1 ขั้นตอนภายในตัวอย่างข้อมูล เราต้องกลับไปพิจารณาเรื่องอื่น ๆ ถ้าเราเชื่อว่าการคาดการณ์แนวโน้มในปัจจุบันเกี่ยวกับสิ่งที่เกิดขึ้นในระยะเวลา 20 ปีที่ผ่านมาเราสามารถสร้างกรณีสำหรับโมเดล LES ด้วย 945 0.3 และ 946 0.1 ได้ ถ้าเราต้องการที่จะไม่เชื่อเรื่องว่ามีแนวโน้มในระดับท้องถิ่นแบบใดแบบหนึ่งของ SES อาจอธิบายได้ง่ายกว่านี้และจะให้การคาดการณ์ระดับกลางของถนนต่อไปอีก 5 หรือ 10 ครั้ง ชนิดของแนวโน้มการอนุมานที่ดีที่สุดคือแนวนอนหรือเส้นตรงหลักฐานเชิงประจักษ์ชี้ให้เห็นว่าหากข้อมูลได้รับการปรับแล้ว (ถ้าจำเป็น) สำหรับอัตราเงินเฟ้อแล้วก็อาจจะไม่ระมัดระวังในการคาดการณ์ระยะสั้นในเชิงเส้น แนวโน้มที่ไกลมากในอนาคต แนวโน้มที่เห็นได้ชัดในวันนี้อาจลดลงในอนาคตอันเนื่องมาจากสาเหตุที่แตกต่างกันเช่นความล้าสมัยของผลิตภัณฑ์การแข่งขันที่เพิ่มขึ้นและการชะลอตัวของวัฏจักรหรือการปรับตัวในอุตสาหกรรม ด้วยเหตุนี้การเรียบอย่างง่ายจึงมักจะทำให้ได้ตัวอย่างที่ดีกว่าที่ควรจะเป็นอย่างอื่นแม้จะมีการอนุมานแนวโน้มในแนวนอน การปรับเปลี่ยนรูปแบบการลดลงของรูปแบบการเพิ่มประสิทธิภาพเชิงเส้นแบบเชิงเส้นมักใช้ในการปฏิบัติเพื่อแนะนำโน้ตของอนุรักษนิยมในการคาดการณ์แนวโน้ม โมเดล LES ที่มีแนวโน้มลดลงสามารถใช้เป็นกรณีพิเศษของรูปแบบ ARIMA โดยเฉพาะ ARIMA (1,1,2) เป็นไปได้ในการคำนวณช่วงความเชื่อมั่นรอบการคาดการณ์ในระยะยาวที่ผลิตโดยแบบจำลองการทำให้เรียบโดยพิจารณาเป็นกรณีพิเศษของรูปแบบ ARIMA ความกว้างของช่วงความเชื่อมั่นขึ้นอยู่กับ (i) ข้อผิดพลาด RMS ของโมเดล (ii) ประเภทของการปรับให้เรียบ (แบบง่ายหรือแบบเส้นตรง) (iii) ค่า (s) ของคงที่ราบเรียบ (s) และ (iv) จำนวนรอบระยะเวลาที่คุณคาดการณ์ โดยทั่วไปช่วงเวลาจะกระจายออกไปได้เร็วกว่าเมื่อ 945 มีขนาดใหญ่ขึ้นในรูปแบบ SES และแพร่กระจายได้เร็วกว่ามากเมื่อใช้เส้นตรงมากกว่าการเรียบแบบเรียบ หัวข้อนี้จะกล่าวถึงต่อไปในส่วนรูปแบบ ARIMA ของบันทึกย่อ (รุ่น MA) รุ่นของซีรีส์เวลาที่รู้จักกันในชื่อ ARIMA อาจรวมถึงข้อกำหนดอัตโนมัติและหรือข้อกำหนดเฉลี่ยที่เคลื่อนที่ได้ ในสัปดาห์ที่ 1 เราได้เรียนรู้คำอัตโนมัติในรูปแบบชุดเวลาสำหรับตัวแปร x t เป็นค่า lag ของ x t ตัวอย่างเช่นคำจำกัดความที่ล่าช้า 1 คือ x t-1 (คูณด้วยสัมประสิทธิ์) บทเรียนนี้กำหนดคำศัพท์เฉลี่ยเคลื่อนที่ ค่าเฉลี่ยเคลื่อนที่ในรูปแบบของชุดเวลาเป็นข้อผิดพลาดที่ผ่านมา (คูณด้วยสัมประสิทธิ์) อนุญาต (wt overset N (0, sigma2w)) ซึ่งหมายความว่า w w จะเหมือนกันกระจายอย่างอิสระแต่ละอันมีการแจกแจงแบบปกติมีค่าเฉลี่ย 0 และค่าความแปรปรวนเดียวกัน รูปแบบการเคลื่อนที่โดยเฉลี่ยที่ 1 แสดงโดย MA (1) คือ (xt mu wt theta1w) รูปแบบการเคลื่อนที่โดยเฉลี่ยแบบที่ 2 แสดงโดย MA (2) คือ (xt mu wt theta1w theta2w) , แสดงโดย MA (q) คือ (xt หมู่น้ำหนักเบา theta1w theta2w จุด thetaqu) หมายเหตุ ตำราเรียนและโปรแกรมซอฟต์แวร์จำนวนมากกำหนดรูปแบบที่มีสัญญาณเชิงลบก่อนข้อกำหนด นี้ไม่ได้เปลี่ยนคุณสมบัติทางทฤษฎีทั่วไปของรูปแบบแม้ว่าจะไม่พลิกสัญญาณเกี่ยวกับพีชคณิตของค่าสัมประสิทธิ์ประมาณและเงื่อนไข (unsquared) ในสูตรสำหรับ ACFs และความแปรปรวน คุณจำเป็นต้องตรวจสอบซอฟต์แวร์ของคุณเพื่อตรวจสอบว่ามีการใช้เครื่องหมายเชิงลบหรือบวกในการเขียนแบบจำลองที่ถูกต้องหรือไม่ R ใช้เครื่องหมายบวกในโมเดลต้นแบบดังที่เราทำที่นี่ คุณสมบัติเชิงทฤษฎีของซีรี่ส์เวลากับแบบ MA (1) โปรดทราบว่าค่าที่ไม่ใช่ศูนย์เดียวใน ACF ทางทฤษฎีเป็นค่าความล่าช้า 1 autocorrelations อื่น ๆ ทั้งหมดเป็น 0 ดังนั้นตัวอย่าง ACF กับ autocorrelation อย่างมีนัยสำคัญเท่านั้นที่ล่าช้า 1 เป็นตัวบ่งชี้ของรูปแบบที่เป็นไปได้ MA (1) สำหรับนักเรียนที่สนใจการพิสูจน์คุณสมบัติเหล่านี้เป็นส่วนเสริมของเอกสารฉบับนี้ ตัวอย่างที่ 1 สมมติว่าแบบจำลอง MA (1) คือ x t 10 w t .7 w t-1 ที่ไหน (น้ำหนักเกิน N (0,1)) ดังนั้นค่าสัมประสิทธิ์ 1 0.7 ทฤษฎี ACF ได้รับโดยพล็อตของ ACF นี้ดังนี้ พล็อตที่แสดงให้เห็นคือทฤษฎี ACF สำหรับ MA (1) กับ 1 0.7 ในทางปฏิบัติตัวอย่างมักไม่ค่อยให้รูปแบบที่ชัดเจนเช่นนี้ ใช้ R เราจำลองค่า n 100 ตัวอย่างโดยใช้โมเดล x t 10 w t .7 w t-1 โดยที่ w t iid N (0,1) สำหรับการจำลองแบบนี้ข้อมูลพร็อพเพอร์ตี้ตามเวลาจะเป็นดังนี้ เราไม่สามารถบอกได้มากจากพล็อตนี้ ตัวอย่าง ACF สำหรับข้อมูลจำลองดังต่อไปนี้ เราจะเห็นการเพิ่มขึ้นของความล่าช้าที่ 1 ตามด้วยค่าที่ไม่ใช่นัยสำคัญสำหรับความล่าช้าในอดีต 1. โปรดทราบว่าตัวอย่าง ACF ไม่ตรงกับรูปแบบทางทฤษฎีของ MA ต้นแบบ (1) ซึ่งเป็นค่าความสัมพันธ์ระหว่างความล่าช้าทั้งหมดที่ผ่านมา 1 จะเป็น 0 ตัวอย่างที่แตกต่างกันจะมีตัวอย่าง ACF ที่แตกต่างกันเล็กน้อยที่แสดงด้านล่าง แต่อาจมีลักษณะกว้างเช่นเดียวกัน สมบัติทางทฤษฎีของแบบเวลากับแบบ MA (2) สำหรับแบบจำลอง MA (2) คุณสมบัติทางทฤษฎีมีดังต่อไปนี้: โปรดทราบว่าเฉพาะค่าที่ไม่ใช่ศูนย์ใน ACF ทางทฤษฎีเท่านั้นสำหรับการล่าช้า 1 และ 2 ค่าความสัมพันธ์กับความล่าช้าที่สูงขึ้นคือ 0 ดังนั้น ACF ตัวอย่างกับ autocorrelations อย่างมีนัยสำคัญที่ล่าช้า 1 และ 2 แต่ autocorrelations ที่ไม่สำคัญสำหรับความล่าช้าสูงแสดงให้เห็นถึงรูปแบบที่เป็นไปได้ MA (2) iid N (0,1) ค่าสัมประสิทธิ์คือ 1 0.5 และ 2 0.3 เนื่องจากนี่คือ MA (2) ทฤษฎี ACF จะมีค่าที่ไม่ใช่ศูนย์เฉพาะที่ล่าช้า 1 และ 2 ค่าของสอง autocorrelations ไม่ใช่ศูนย์เป็นพล็อต ACF ตามทฤษฎี เกือบตลอดเวลาเป็นกรณีตัวอย่างข้อมูลเคยชินทำงานค่อนข้างสมบูรณ์เพื่อเป็นทฤษฎี เราจำลองค่าตัวอย่าง 150 ตัวอย่างสำหรับรุ่น x t 10 w t .5 w t-1 .3 w t-2 โดยที่ w t iid N (0,1) พล็อตชุดข้อมูลตามลำดับ เช่นเดียวกับชุดข้อมูลอนุกรมเวลาสำหรับข้อมูลตัวอย่าง MA (1) คุณไม่สามารถบอกได้มากจากข้อมูลนี้ ตัวอย่าง ACF สำหรับข้อมูลจำลองดังต่อไปนี้ รูปแบบเป็นเรื่องปกติสำหรับสถานการณ์ที่โมเดล MA (2) อาจเป็นประโยชน์ มีสอง spikes ที่สำคัญอย่างมีนัยสำคัญที่ล่าช้า 1 และ 2 ตามด้วยค่าที่ไม่สำคัญสำหรับความล่าช้าอื่น ๆ โปรดทราบว่าเนื่องจากข้อผิดพลาดในการสุ่มตัวอย่างตัวอย่าง ACF ไม่ตรงกับรูปแบบทางทฤษฎีเลย ACF for General MA (q) Models คุณสมบัติของโมเดล MA (q) โดยทั่วไปคือมีความสัมพันธ์กับค่าที่ไม่ใช่ศูนย์สำหรับ q lags แรกและ autocorrelations 0 สำหรับ lags ทั้งหมด gtq ความไม่เป็นเอกลักษณ์ของการเชื่อมต่อระหว่างค่า 1 และ (rho1) ในรูปแบบ MA (1) ในรูปแบบ MA (1) สำหรับค่า 1 1 1 ซึ่งกันและกันให้ค่าเช่นเดียวกับตัวอย่างให้ใช้ 0.5 เป็นเวลา 1 จากนั้นใช้ 1 (0.5) 2 เป็นเวลา 1 คุณจะได้รับ (rho1) 0.4 ในทั้งสองกรณี เพื่อตอบสนองข้อ จำกัด ทางทฤษฎีที่เรียกว่า invertibility เรา จำกัด โมเดล MA (1) ให้มีค่าที่มีค่าสัมบูรณ์น้อยกว่า 1. ในตัวอย่างที่ให้ไว้เพียงแค่ 1 0.5 จะเป็นค่าพารามิเตอร์ที่ยอมให้ใช้ได้ในขณะที่ 1 10.5 2 จะไม่ ความผันแปรของรูปแบบ MA แบบจำลอง MA กล่าวได้ว่าเป็น invertible ถ้าเป็นพีชคณิตเทียบเท่ากับรูปแบบ AR อนันต์ converging โดยการบรรจบกันเราหมายถึงค่าสัมประสิทธิ์ของ AR ลดลงเป็น 0 เมื่อเราเคลื่อนที่ย้อนกลับไปในเวลา Invertibility คือข้อจํากัดที่ตั้งโปรแกรมเป็นซอฟต์แวร์ชุดเวลาที่ใช้ในการประมาณค่าสัมประสิทธิ์ของแบบจำลองที่มีเงื่อนไข MA ไม่ใช่สิ่งที่เราตรวจสอบในการวิเคราะห์ข้อมูล ข้อมูลเพิ่มเติมเกี่ยวกับข้อ จำกัด ด้านความสามารถในการซ่อนตัวของ MA (1) ได้รับในภาคผนวก ทฤษฎีขั้นสูงหมายเหตุ สำหรับแบบจำลอง MA (q) ที่มี ACF ที่ระบุมีรูปแบบที่มีการเปลี่ยนแปลงได้เพียงแบบเดียว เงื่อนไขที่จำเป็นสำหรับ invertibility คือสัมประสิทธิ์มีค่าเช่นว่าสมการ 1- 1 y - - q y q 0 มีคำตอบสำหรับ y ที่อยู่นอกวงกลมหน่วย R รหัสสำหรับตัวอย่างในตัวอย่างที่ 1 เราได้วางแผนทฤษฎี ACF ของโมเดล x t 10 w t 7w t-1 จากนั้นจำลองค่า n 150 จากแบบจำลองนี้และวางแผนตัวอย่างซีพียูและตัวอย่าง ACF สำหรับข้อมูลจำลอง คำสั่ง R ที่ใช้ในการวางแผน ACF ทางทฤษฎี ได้แก่ acfma1ARMAacf (mac (0.7), lag. max10) 10 ACL ล่าช้าสำหรับ MA (1) กับ theta1 0.7 lags0: 10 สร้างตัวแปรล่าช้าที่มีตั้งแต่ 0 ถึง 10 (h0) เพิ่มแกนนอนลงในพล็อตคำสั่งแรกกำหนด ACF และจัดเก็บไว้ในอ็อบเจกต์ (ACF) และจะมีการจัดเก็บข้อมูลไว้ในออปเจ็กต์ (acfma1, xlimc (1,10), ylabr, typeh, ACF หลักสำหรับ MA (1) ด้วย theta1 0.7) ชื่อ acfma1 (เลือกชื่อของเรา) พล็อตคำสั่ง (คำสั่งที่ 3) แปลงล่าช้ากับค่า ACF สำหรับล่าช้า 1 ถึง 10 พารามิเตอร์ ylab ตั้งชื่อแกน y และพารามิเตอร์หลักจะทำให้ชื่อเรื่องเป็นพล็อต หากต้องการดูค่าตัวเลขของ ACF เพียงแค่ใช้คำสั่ง acfma1 การจำลองและแปลงทำตามคำสั่งต่อไปนี้ xcarima. sim (n150 รายการ (mac (0.7))) เลียนแบบ n 150 ค่าจาก MA (1) xxc10 เพิ่ม 10 เพื่อให้ค่าเฉลี่ย 10. ค่าเริ่มต้นของการจำลองจะหมายถึง 0. plot (x, typeb, mainSimulated MA (1) data) acf (x, xlimc (1,10), mainACF สำหรับข้อมูลตัวอย่างจำลอง) ในตัวอย่างที่ 2 เราวางแผนใช้ทฤษฎี ACF ของโมเดล xt 10 wt .5 w t-1 .3 w t-2 จากนั้นจำลองค่า n 150 จากแบบจำลองนี้และวางแผนตัวอย่างซีพียูและตัวอย่าง ACF สำหรับข้อมูลจำลอง คำสั่ง R ใช้คือ acfma2ARMAacf (mac (0.5,0.3), lag. max10) acfma2 lags0: 10 พล็อต (ล่าช้า acfma2, xlimc (1,10), ylabr, typeh, ACF หลักสำหรับ MA (2) กับ theta1 0.5, theta20.3) abline (h0) xcarima. sim (n150 รายการ (mac (0.5, 0.3))) xxc10 พล็อต (x, typeb, หลักจำลองแมสซาชูเซตส์ (2) ซีรี่ส์) acf (x, xlimc (1,10), mainACF สำหรับข้อมูลจำลอง MA (2)) ภาคผนวก: การพิสูจน์คุณสมบัติของ MA (1) สำหรับนักเรียนที่สนใจนี่เป็นหลักฐานสำหรับคุณสมบัติทางทฤษฎีของโมเดล MA (1) ความแปรปรวน: (text (xt) text (mu wt theta1 w) ข้อความ 0 (wt) text (theta1w) sigma2w theta21sigma2w (1theta21) sigma2w) เมื่อ h 1 นิพจน์ก่อนหน้านี้ 1 w 2. สำหรับ h 2 ใด ๆ นิพจน์ก่อนหน้า 0 เหตุผลก็คือตามนิยามของความเป็นอิสระของน้ำหนัก E (w k w j) 0 สำหรับ k j ใด ๆ นอกจากนี้เนื่องจาก w t มีค่าเฉลี่ยเป็น 0, E (w j w j) E (w j 2) w 2 สำหรับซีรี่ส์เวลาให้ใช้ผลลัพธ์นี้เพื่อให้ได้ ACF ที่ระบุไว้ด้านบน รูปแบบแมสซาชูเซตแบบพลิกกลับเป็นแบบที่สามารถเขียนเป็นแบบจำลอง AR ที่ไม่มีที่สิ้นสุดซึ่งจะมาบรรจบกันเพื่อให้ค่าสัมประสิทธิ์ AR แปรผันไปที่ 0 เมื่อเราเคลื่อนตัวกลับในเวลาอนันต์ แสดงให้เห็นถึงความสามารถในการพลิกกลับของ MA (1) ได้ดี จากนั้นเราจะแทนความสัมพันธ์ (2) สำหรับ w t-1 ในสมการ (1) (3) (zt wt theta1 (z-theta1w) wt theta1z-theta2w) ณ เวลา t-2 สมการ (2) กลายเป็นเราแทนความสัมพันธ์ (4) สำหรับ w t-2 ในสมการ (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) ถ้าเราจะดำเนินการต่อ อนันต์) เราจะได้รับแบบอนุกรม AR อนันต์ (zt wt theta1 z - theta21z theta31z - theta41z จุด) หมายเหตุ แต่ที่ 1 1 สัมประสิทธิ์คูณความล่าช้าของ z จะเพิ่มขึ้น (อนันต์) ในขนาดที่เราย้ายกลับมา เวลา. เพื่อป้องกันปัญหานี้เราต้องใช้ 1 lt1 นี่เป็นเงื่อนไขสำหรับรูปแบบ MA (1) ที่มองไม่เห็น รูปแบบการสั่งซื้อ Infinite Order ในสัปดาห์ที่ 3 ให้ดูว่าแบบจำลอง AR (1) สามารถแปลงเป็นแบบจำลอง MA อนันต์: (xt - mu wt phi1w phi21w dots phik1 w counts sum phij1w) ข้อสรุปของคำพูดเสียงสีขาวที่ผ่านมาเป็นที่รู้จักกัน เป็นตัวแทนเชิงสาเหตุของ AR (1) กล่าวอีกนัยหนึ่ง x t เป็น MA ชนิดพิเศษที่มีจำนวนอนันต์ที่จะย้อนกลับไปในเวลา นี่เรียกว่าลำดับ MA หรือ MA () ที่ไม่มีขีด จำกัด คำสั่งที่แน่นอนคือแมสซาชูเซตส์อนันต์ลำดับ AR และคำสั่งใด ๆ ที่ จำกัด AR เป็นลำดับที่ไม่มีขีด จำกัด MA จำได้ว่าในสัปดาห์ที่ 1 เราสังเกตเห็นว่าข้อกำหนดสำหรับ AR (1) ที่หยุดนิ่งคือ 1 lt1 ให้คำนวณ Var (x t) โดยใช้การแทนสาเหตุ ขั้นตอนสุดท้ายนี้ใช้ข้อเท็จจริงพื้นฐานเกี่ยวกับชุดข้อมูลทางเรขาคณิตที่ต้องใช้ (phi1lt1) มิฉะนั้นชุดข้อมูลจะแตกต่างออกไป การเดินเรือ
Comments
Post a Comment